Recently the micromega developing group has come up with its latest version 2.4 where they have included some really useful subroutines to calculate various other things which were not there in the previous versions. To tell you what micromega is, its a publicly available numerical package based on fortran and C, which calculates the relic density of dark matter in any supersymmetric model with conserved R-parity. In version 2.2 which I used last year, I could calculate the relic density , as well as the branching ratios of dark matter self annihilations as well as co-annihilations into various standard model particles, and direct detection rates etc. The best thing about micromega I found was the option of incorporating any supersymmetric model. Last year I was trying to use it for supersymmetric left-right model. Last year I was dying to study some particle physics models from dark matter indirect detection experiments point of view, that is , I wanted to know whether a particular dark matter candidate in my model can explain the anomalous positron excess over antiprotons found in various indirect detection experiments like PAMELA, FERMI etc. But when I came to know that for that I need to use both micromega as well as another package called GALPROP which basically studies the cosmic ray propagation, I gave up. But last month the micromega group has come up with something is a combination of earlier micromega and the GALPROP. Its really exciting to me since now I can incorporate any model into it and study it from indirect detection experiments point of view. I run it yesterday for the MSSM, and the output I got contained relic density, branching fractions of Dark matter self as well as co-annihilations and more importantly flux of positrons, antiprotons and photons. Although the plots of positron did not give any kind of peak (which PAMELA observed), as its the case for usual dark matter candidates in MSSM, but may be some other models will give rise to a desired peak. This will anyway decrease the amount of work a theorist have to do, now we don't have to write long programmes for the calculations , just write the .mdl files for a particular model and put it inside micromega and test the model against the indirect detection experimental results. Kudos to micromega developers..keep it up!
Saturday, May 8, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment